1. Water has many characteristics beneficial to life. Because of (a) __________ bonding between water molecules, it is a liquid at temperatures suitable for life. Water is considered a universal (b) ______________ that facilitates chemical reactions inside and outside the cell. Although water molecules are (c) __________, that is, cling together, they allow dissolved and suspended molecules to be evenly distributed throughout a system, such as in blood vessels. Water is able to absorb a great deal of (d) ______________ before it boils, while being able to hold that heat for a long period of time. This helps organisms maintain their normal internal temperature. In order for evaporation of water to occur, a large amount of heat is needed to break the hydrogen bonds. This high heat of (e) ______________ allows animals in a hot environment to release excess body heat, thus cooling the body. As water cools and reaches the freezing temperature, water expands and makes ice less (f) ______________. Aquatic organisms are protected with the ice on top of the water during winter.

2. The chemical bond that will form between the molecules in the diagram is a(n):

 ![Diagram](image)

 A. Ionic bond
 B. Peptide bond
 C. Covalent bond
 D. Hydrogen bond

3. Label the following diagram of the pH curve with the following terms: basic, acidic, neutral, hydrogen ion concentration and hydroxide ion concentration:

 ![Diagram](image)

 a. __________
 b. __________
 c. __________
 d. __________
 e. __________
4. The solution in the beaker below has a pH of 7:

Which of the following diagrams correctly represents a solution with a pH less than 7:

5. As the pH of a solution changes from 7.5 to 8.9, it becomes more (a) _______.
 At a pH of 7, the number of hydrogen ions (b) ______________ the number of hydroxide ions. A pH of 6 has (c) _______ times as much hydrogen ions as a pH of 8. The pH curve starts at (d) _____ and goes to (e) _____. As the pH of a solution increases, the number of hydrogen ions (f) _________________ (increases / decreases). As the pH of a solution increases, the number of hydroxide ions (g) ________________ (increases / decreases). (h) __________________ help to prevent any change in blood pH.

6. The four classes of organic molecules associated with living things are:

 a) ____________________________
 b) ____________________________
 c) ____________________________
 d) ____________________________

 Organic molecules always contain (e) _______________ and hydrogen atoms.
7. Label each of the following structures with one of the following terms: phospholipid, cholesterol, amino acid, fat (triglyceride), glucose, nucleotide.

8. Utilize the following terms to label the diagram below: hydrolysis, condensation, H₂O, disaccharide, and monosaccharide.

9. Label the following M if it is a monomer, and P if it is a polymer:

 ____ Polysaccharide
 ____ Glucose
 ____ Triglyceride
 ____ Nucleotide
 ____ Nucleic Acid
 ____ Protein
CARBOHYDRATES:

10. Match the following terms to one of the statements below: glucose, cellulose, sucrose, maltose, glycogen, and fructose.

A disaccharide found in table sugar
A hexose found in fruits
Monsaccharide used by cells as their primary energy source
A polysaccharide found in plant cell walls
Hydrolysis of this disaccharide yields two glucose units
Storage form of glucose in animal cells

11. This diagram shows a molecule that is found in the:

A Liver B Blood C Pancreas D Gall bladder

12. Identify the molecule below:

CH₂OH

a. What is the general term given to polymers formed from this molecule: ______

b. List two biological functions of these polymers: ____________________________

13. Which of the following molecules is a carbohydrate:

A C₃H₇O₂N B C₆H₁₂O₆ C C₁₃H₂₆O₂ D C₂₀H₄₀O₂
LIPIDS:

14. Match the following terms to one of the statements below: *triglyceride, phospholipid, fat, fatty acid, unsaturated fatty acids, and saturated fatty acids.*

- Hydrocarbon chain that has double bonds
- Used for long-term energy storage, insulation, and protection
- Hydrocarbon chain that accounts for the solid nature of butter
- Hydrocarbon chain that ends with acidic group – COOH
- Hydrolysis of this molecule yields glycerol and 3 fatty acids
- Found in the cell membrane of cells

PROTEINS:

15. Match the following terms to one of the statements below: *enzymes, amino acids, R groups, secondary structure, polypeptide, and tertiary structure.*

- Protein’s final three-dimensional shape
- Accounts for differences in amino acids
- A single chain of amino acids
- Alpha helix of polypeptide strand
- Monomer subunit of a protein
- Proteins that speed up chemical reactions

16. The diagram below illustrates a step in the:

A Hydrolysis of a protein
B Synthesis of an enzyme
C Production of nucleic acid
D Conversion of glucose molecules to starch

17. This molecule is part of a(n):

A Fat
B Protein
C Nucleic acid
D Carbohydrate

18. The diagram below represents which level of
PROTEIN STRUCTURE:

A Tertiary
B Primary
C Secondary
D Quaternary

19. The diagram below indicates which level of structure:

A Only primary
B Primary and Secondary
C Primary, secondary, and tertiary
D Primary, secondary, tertiary and quaternary

NUCLEIC ACIDS:

20. Match the following terms to one of the statements below: DNA, RNA, and nucleotide – some answers may be used more than once.

__________ Monomer of nucleic acid
__________ Works with DNA to bring about protein synthesis
__________ Composed of deoxyribose sugar and is double stranded
__________ Held together by hydrogen bonds
__________ Composed of a pentose sugar, a phosphate group, and a nitrogen base

21. When an acid is added to a solution, the:

A $[H^+]$ increases and raises the pH
B $[H^+]$ increases and lowers the pH
C $[H^+]$ decreases and raises the pH
D $[H^+]$ decreases and lowers the pH
BIO 12 – UNIT 2a
CELL COMPOUNDS AND BIOLOGICAL MOLECULES

22. Which of these molecules is a building block or monomer of RNA?

A.

B.

C.

D.

23. When a base is added to a solution, the:

A $[\text{OH}^+]$ increases and raises the pH
B $[\text{OH}^+]$ increases and lowers the pH
C $[\text{OH}^+]$ decreases and raises the pH
D $[\text{OH}^+]$ decreases and lowers the pH

24. The bond that occurs between a carbon atom of one amino acid and the nitrogen atom of a second amino acid is termed a(n):

A Hydrogen bond
B Weak bond
C Peptide bond
D Ionic bond
E Covalent bond

25. The backbone of a nucleic acid is composed of:

A Nitrogen bases
B Sugar – phosphate – sugar – phosphate
C Sugar – base – sugar – base
D Phosphate – base – phosphate – base

26. Which of the following pairs is mismatched:

A Amino acid – protein
B Glycerol – glycogen
C Glucose – starch
D Phosphate – nucleotide
E Cholesterol – steroid hormones
27. Proteins, when exposed to extreme heat and pH, will:

A Denature
B Ionize
C Dissociate
D Polymerize
E Form peptide bonds

28. What characteristics do all lipids have in common:

A Contain fatty acids and glycerol
B Contain phosphate
C Provide a large amount of energy
D Subunits combined by peptide bonds
E Do not dissolve in water

29. Which of the following pairs is mismatched:

A Carbohydrates – quick energy
B Fats – long-term energy
C Proteins – cellular structure
D Nucleic acids – protein synthesis
E Lipids – make up genes

30. Soaps and water mix but oil and water do not mix. Explain why, when soap is added to oil, the oil will then mix with water.